Innovating Energy Technology

DISTRIBUTION

Digital Multi function Protection relay and Controller
F-MPC60G Series

Digital Multi function Protection relay and Controller

F-MPC60G Series

These are multifunctional digital relays that come with new measurement and display functions and comply with international standards.

F-MPC* refers to a multifunctional digital relay that combines the protection, operation, measurement, monitoring and transmission functions of high-voltage power receiving and distribution equipment into a compact unit.
The new F-MPC60G Series has a new measurement display function, further improving usability. *F-MPC: Fuji Multiple function Protector and Controller

| Adoption of Color LCD

These are multifunctional digital relays with a color LCD display.

Highly visible display of measured values

Easy to set up from a setting list

Previous (F-MPC60B)

Conventionally, you would have to select the setting item by checking the code in the setting code table

Conventionally, it was necessary to check the code in the setting code table, while referring to the manual for details on data settings.

New F-MPC60G

Since you can select from the setting list and display the setting range, it is now possible to avoid setting errors due to mistakes when reading the manual.

Various measurement, display and recording functions

| Waveform recording function for times of system failure

It incorporates a function for recording accident waveforms during protective operation at times of accidents.
It also includes a calendar and clock, which can be used during cause

| Current, voltage vector display

It is now possible to check the state of phase angles using vector diagrams. It can be used when doing checks during installation or maintenance.

Grasp voltage and current phases at a glance!

Maintains compatibility with old and new models

Based on the concepts of the F-MPC60B Series including the same external mounting dimensions, wiring terminal block, communication function, CPU duplication and self-diagnosis function.
Easy to replace with the new model.

Enables space savings and wire savings!

Space savings and wire savings can be achieved by integrating multiple protective relays, display devices, and operation switches into a single unit.

Conventional system diagram via single-function relay

Multifunctional relay based integrated system diagram

F-MPC60G (UM6 type) multifunctional digital relays for high-voltage power-receiving

Loader application
 The loader software can easily manage the setting values of protective relays with a PC, while also coming with a "relay test function" to easily perform relay tests.

Setting values can be read and written from the multifunctional digital relay, making it easy to manage the setting values of the protective relay.
Recorded information (accidents, accidents waveforms, etc.) can be displayed and saved in order to support analysis at the time of accidents.
The test conditions and judgment values of the selected protective function are displayed to prevent errors in the relay test.

Initial screen

1 Setting value set and save function

Function Setting Mode

Collectively managed data can be downloaded (read and saved) and uploaded (write saved data to the main unit) as setting data from the main unit.

* In addition, you can make preparations in advance, since the adjustment data on the loader software can be created without utilizing the main unit.

| List of setting items

2 Relay unit test Navigation

Do you have experience with this?

Setting method
 Easy to set up with the navigation system

Make test preparations for each protection element in just 3 steps using the screen.

STEP1 Protection element selection

Eliminates errors in test conditions and theoretical values, and prevents human errors in changing or forgetting to return to the setting values.

STEP1 Selecting to relay	
Protective 50iNST	-
Protective Solinst	\wedge
Protective SIOC	
Protective 510T	
Protective S1072	
Protective 590 V	
Protective 27UV	
Protective 27UV2	
Protective SUG	$\stackrel{\sim}{\sim}$

View and select the relay test protection element that can be tested in the connected format

STEP2 Read settings with "Reading" button

Select the protective element in Step 1 to automatically readout the setting values.

STEP3 Test item selection

STEP3 Selecting to test item

- ope value
- OpeTime(300\%) OqpeTime(500\%) © OpeTime(700\%) Ope.Time(1000\%)

Select the test items for the selected protection element Depending on the selected test items, the displayed application conditions and theoretical values may change.

Test start \quad Reduction of relay test errors from start to finish

By using a relay tester, you can easily test the protective element and compare the results with theoretical values in order to reduce test errors from start to finish.

Relay Tester

Operate the relay tester in accordance with the instructions for the application points and application conditions.

Relay test start

By pressing the relay start button, the setting values that obstruct the relay test you want to perform will automatically enter the LOCK state (disabled state).

Features Reduce errors at the start of the test!

SILP' Unit change to relay test mode

Test start

Running: Guides you to start the relay test. Start the relay test.

Application points

Terminal block No.

Input to the Ia, The connection position is A13,15(k) arid A14,16(1)
Input to the Ib , The connection position is $\Lambda 17,19(\mathrm{k})$ and A18,20(1)
input to the Ic, The connection position is $\mathrm{A} 21,23(\mathrm{k})$ and A22,24(1)

Displays the connection terminal number to be applied to F-MPC60G.

Application conditions

Displays the method to be applied during a relay test.

Theoretical values

Accuracy

Ope.time	$0.315 s+0.1 s(0.215$
to $0.415 s)$	

During the operating value test:
The theoretical operating values are displayed.
During the operating time test:
The theoretical operating time is displayed.

Relay test finish

By pressing the relay test end button, the setting values that obstruct the relay test will automatically be returned from the LOCK state (disabled state) to the original state.

Features Reduce inadvertent errors at the end of the test!

Trio Detection(01/01)
07/07/2020 12:58 Setting: 510 C 10\% Setting: 5100 10\%

Magnification 10.Otime \begin{tabular}{|l|}
Magnification

\hline 10.0 otime

\hline 10

\hline I

\hline

16 \& 0.00 A

\hline 10 \& $\cdots+\cdots$

\hline

\hline IC \& 0.00 A \& $\cdots \cdots \cdots$

\hline
\end{tabular}

Inputs (8-1):0000 0000
Outputs $(8-1): 00000000$

Test results

Test status
Imin Detection

First: Output turn off of amplifier. Next: Click to the End button.

Checking test condition before relay tes

Preparation
-Preparation - $\begin{aligned} & \text { Please press the resel buttorn when displaying the }\end{aligned}$. operational relay.

$$
\begin{aligned}
& \text { Terminal block No. } \\
& \text { Input to the In, The connection position is A13, } 1 \\
& \mathrm{~A} 19,16(1)
\end{aligned}
$$

$$
\text { Trymat to the Th, The cxurnection poxition is A17, } 1
$$

Test complete!

- Input Condition

Change rapidly from0 $\mathrm{A}->1.5 \mathrm{~A}$ (CT secondary rate current \times Setting current $\times 300 \%$)

3 Waveform Record

Function Accident analysis support

The accident waveforms recorded by the F-MPC60G are displayed in a graph.

Graph display content	
Analog data	Digital data
3-phase voltage	Digital input and output 16 points
3-phase current	Protective action detection status 16 points
Zero-phase voltage and current	
In addition, it comes with the following functions as analysis support tools for the above signals:	
-Graph zoom function	
-Comparison function via A-B cursor	
-Numerical display function of cursor points in graph	

Capable of displaying detailed waveforms! Waveforms can help you analyze accidents!

By using the zoom function, you can easily see the detailed waveform status.

Introduction to measured value display and history display functions

Meter

Displays the F-MPC60G measurement data, device failure and protective relay ON/OFF state.

Error Record

Displays and saves to your PC the failure history for 10 items recorded by F-MPC60G.

Makes time measurements easy and is useful for accident analysis from the time axis!

You can easily measure the time between A and B on a waveform. You can find out what time the accident occurred.

Trip Record

Displays and saves to your PC the accident history for 10 items recorded by F-MPC60G.

CB ON/OFF Test Record

Displays and saves to your PC the circuit breaker operation test history for 6 items recorded by F-MPC60G.

MINIMUM ORDERS

Orders amounting to less than $\mathbf{¥ 1 0 , 0 0 0}$ net per order will be charged as $¥ 10,000$ net per order plus freight and other charges.

WEIGHTS AND DIMENSIONS

Weights and dimensions appearing in this catalog are the best information available at the time of going to press. FUJI ELECTRIC FA has a policy of continuous product improvement, and design changes may make this information out of date.
Please confirm such details before planning actual construction.

INFORMATION IN THIS CATALOG IS SUBJECT TO CHANGE WITHOUT NOTICE.

Energy Contril Equipment

Power Monitoring Equipment
 Digital Multi function Protection relay and Controller F-MPC60G

Digital Multi function Protection relay and Controller F-MPC60G

Features 14
Type number nomenclature 14
Types and ratings 15
Protecting Elements 15
Specifications 16
General specifications 16
Measurement/Display Specifications. 18
History data 19
Specifications of protective relays 20
Specifications of transducer outputs 21
Specifications of kWh pulse output. 21
Communications specifications 21
Accident waveform recording data specification 22
Clock specifications 22
51(OC), 51G(OCG) relay characteristics 23
External dimensions 24
Indications \& Settings 25
Wiring diagram example 26
AC Power Supply Unit for F-MPC60G/60B/50 Series 33
Zero-Phase Reference Input Device (ZVT) (For F-MPC60G/60B/50 Series) 34

Power Monitoring Equipment Digital Multi function Protection relay and Controller F-MPC60G

Features

- Improved visibility

Clear visibility and operability via color LCD.

- Maintains Compatibility with Existing Models

Succeed to some function of F-MPC60B Series such as same dimension, same terminal block and communication. You can use this model without any design change.

- Equipped with Waveform Recording Function for System Failure
Incorporated a function for recording failure waveforms during protective operation. Calendar functions are newly added to support failure analysis.
- Compliant with the IEC Standards

Complies with up-to-date contents of the standards. Supporting world wide matters is possible. (CE self-declared compliance)

- Network System

Construction of information network system with a host processor is easy by using RS-485 (F-MPC-Net, Modbus RTU), T-Link, or 4-20 mA output.

- Evolution of Support Functions with the Loader Software
Equipped with "Relay test assist function (patent pending)" that directs and assists test conditions of selected protecting elements.

Type number nomenclature

Conformed standards (8)	Applicable no. of phase wires	Unit type (3)	Grounding method (2)	$\begin{aligned} & \text { ZCT } \\ & \text { measurement } \\ & \text { Range (4) } \end{aligned}$	Control power supply (5)	CT secondary rated current (6)	Ground-fault protection system	External interface (Communication method) (7)	$\begin{aligned} & \text { Type } \\ & \text { =Commodity code } \\ & \square: \text { Specify P or Q } \\ & \text { with (4). } \end{aligned}$
JEC	3-phase 3-wire	Power receiving	Resistance grounding	-	$\begin{aligned} & 100 \mathrm{~V} \text { DC } \\ & (80 \text { to } 143 \mathrm{~V} \text { DC) } \\ & 100 \mathrm{~V} \text { AC } \\ & (85 \text { to } 132 \mathrm{~V} \mathrm{AC)} \end{aligned}$	5A	$\begin{aligned} & \text { 67DG } \\ & 50 \mathrm{G}, 51 \mathrm{G} \end{aligned}$	4-20 mA output + RS-485	UM63FN-E5A
						1A			UM63FN-E1A
						5A		T-Link	UM63FN-E5T
						1A			UM63FN-E1T
			Non-grounded system	ZCT 1 A or ZCT 10A		5A	67DG	4-20 mA output + RS-485	UM62F-E5A
						1A			UM62FD-E1A
						5A		T-Link	UM62FD-E5T
						1A			UM62FD-E1T
	3-phase 3-wire (1-phase 2-wire)	Feeder	Non-grounded system			5A		4-20 mA output + RS-485	UM62CD-E5A
						1A			UM62CD-E1A
						5A		T-Link	UM62CD-E5T
						1A			UM62CD-E1T
IEC	3-phase 3-wire	Power receiving	Non-grounded system			5A		4-20 mA output + RS-485	UM62FD-E5AE
						1A			UM62FD-E1AE
	3-phase 3-wire (1-phase 2-wire)	Feeder	Non-grounded system			5A			UM62CD-E5AE
						1A			UM62CD-E1AE
-	3-phase 3-wire	Bus	-	-		-	-	4-20 mA output + RS-485	UM62BN-EA
								T-Link	UM62BN-ET
$\overline{\mathrm{IEC}}$	3-phase 4-wire	Power receiving	Resistance grounding	-		5A	50G, 51G	$4-20 \mathrm{~mA} \text { output + RS-485 }$	UM63FN-E5AK
						1A			UM63FN-E1AK

- Protecting Elements

Note) 1. The JEC specification is the standard (characteristic type: F-MPC) for the Japanese market. The IEC specification (characteristic type: IEC and IEEE) can also be specified for overseas markets (indicate by appending " E " to the product type).
2. OCA: Overcurrent pre-alarm (Can be used as a pre-alarm if the current is set below the rated overcurrent setting)
3. Feeder unit 67 can be combined with a power receiving or bus unit.
4. The number in the protection column indicates the relay (based on "AC substation controller number JEM 1093")

For example, 27: AC undercurrent relay; 51: AC overcurrent relay; 51G: ground fault overcurrent relay; 64: ground fault overvoltage relay; 67: ground fault directional relay
5. When 51 G is selected for a ZCT type power-receiving unit (basic model UM62F), the 51 G specification only applies to the current elements of 67 .
6. Current (A), voltage (V), power (W), reactive power (var), power factor (PF), frequency (F), zero-phase voltage (Vo), zero-phase current (Io), electric energy (Wh), reactive electric energy (varh), demand current (DA), demand power (DW), maximum demand current (DAmax), maximum demand power (DWmax), minimum voltage (Vmin), maximum zero-phase voltage (Vomax), maximum zero-phase current (lo max), harmonic current (HI), harmonic voltage (HV)
** Can be hidden

- Relevant documents: User's Manual

62F7-J-0215 (Japanese)
62F7-E-0215 (English)
62F7-E-0219 (IEC compliant, English)
62F7-J-0240 (For UM63FNE \square AK, Japanese)

Power Monitoring Equipment
 Digital Multi function Protection relay and Controller F-MPC60G

- Specifications

Item		Specifications
Control power supply		100 VDC (80 to 143 VDC), 100 VAC (85 to 132 VAC) common *1
Inrush current		15 A or less, 4.5 ms or less ($100 \mathrm{VAC}, 50 \mathrm{~Hz}$) 13 A or less, 7 ms or less (100 VDC)
Power consumption (main unit)		15 W or less with DC input, 20 VA or less with AC input
FUSE		Contained in control power supply (3 A)
Rated frequency		$50 / 60 \mathrm{~Hz}$ (setting selection)
Rated current (CT secondary)		AC 5 A/1 A: Specify when ordering
Rated voltage (VT secondary)		110 VAC
Zerophase rated voltage ${ }^{* 6}$		EVT tertiary rated voltage: 110V/190V AC and ZVT(ZPD)(designated)*2 Note. Vo/ $\sqrt{3}$ Vo display selectable
Zerophase rated current	ZCT combination *6	AC 200mA/1.5mA (JEC-1201) ZCE \square A/ $\square 200$ to 3000A, ZCED \square / $\square 200$ to 1500A (Fuji Electric Co., Ltd.) Primary side rating AC 1A/10A : Specify when ordering
	CT combination	AC 5 A/1 A (CT residual circuit, CT tertiary) Note 2: Ratio of CT tertiary is from 5 to $400 \mathrm{~A}: 5 \mathrm{~A}$ can be set (from 5 to $100 \mathrm{~A}: 5 \mathrm{~A}$ steps, from 110 to $400 \mathrm{~A}: 10 \mathrm{~A}$ steps) Note 3: $\mathrm{lo} / 310$ display selectable for CT tertiary
Rated load VA	CT secondary	0.5 VA or less
	VT secondary	1.0 VA or less
	EVT tertiary *6	5.0 VA or less
Insulation resistance		Between collective electric circuits and ground $: 100 \mathrm{M} \Omega$ or more (500 VDC ohmmeter) Between mutual electric circuits $:$ $5 \mathrm{M} \Omega$ or more Between contact circuit terminals $:$ $5 \mathrm{M} \Omega$ or more
Vibration resistance		Oscillation frequency 10 Hz , forward/backward \& left/right double amplitude 5 mm , up/down double amplitude 2.5 mm , for 30 sec . each Oscillation frequency 16.7 Hz , double amplitude 0.4 mm , forward/backward, left/right, up/down, for 10 min . each Oscillation frequency 10 to $59 \mathrm{~Hz}, 0.035 \mathrm{~mm}$ Oscillation frequency 59 to $150 \mathrm{~Hz}, 0.5 \mathrm{G} 10$ to 150 Hz for each axis 8 minutes CLASS I
Shock resistance		30 G, 3-axes 6-directions, 3 times each Peak acceleration 5 G pulse width 11 ms , 3 -axes 6 -directions, 3 times each
Bump resistance		Peak acceleration 10 G pulse width 16 ms , 3-axes 6-directions, 1000 times each
Earthquake resistance		Oscillation frequency 1 to 8.5 Hz , X-axis (horizontal) $3.5 \mathrm{~mm}, \mathrm{Y}$-axis (vertical) 1.5 mm Oscillation frequency 8.5 to 35 Hz , X-axis (horizontal) $1 \mathrm{G}, \mathrm{Y}$-axis (vertical) 0.5 G Method A 1 to $35 \mathrm{~Hz}, 10$ minutes, CLASS I
Dielectric strength		Between collective electric circuits and ground 2 kVAC ${ }^{* 3}$, Between mutual electric circuits 2 kVAC However, this excludes RS-485 communication, MN signal wire, transducer output terminal, and kWh P output terminals. ON, OFF, between trip contact circuit terminals $1 \mathrm{kVAC}, 1$ minute.
Electrostatic noise immunity		Metal part contact $\pm 8 \mathrm{kV}$, Panel surface (non-metallic, non-contact) $\pm 15 \mathrm{kV}{ }^{\star 4}$
Noise resistance		Oscillation frequency 1 MHz , common mode/differential mode First wave crest height $2.8 \mathrm{kV}, 1 / 2$ damping time 3 to 6 cycles. Repeating frequency 6 to 10 times/1 period of commercial frequency (asynchronous) JEC2501 waveform 2 (ANSI compliant)
		Peak voltage 1.5 kV Square wave impulse noise ($1 \mathrm{~ns} / 1 \mu \mathrm{~s} 10$ minutes) However, MN signal wire, communication wire (RS-485), transducer output wire, and kWh pulse output wire have a peak voltage of 1.0 kV (clamp), square wave impulse noise ($1 \mathrm{~ns} / 1 \mu \mathrm{~s} 10$ minutes)
		Transceiver noise: $10 \mathrm{~V} / \mathrm{m}$ in 140 MHz band, 430 MHz band, 900 MHz band Mobile ($800 \mathrm{MHz} / 1.5 \mathrm{GHz} 0.8 \mathrm{~W}$), PHS (1.9 GHz 10 mW) attached Radiation electromagnetic field immunity: 80 MHz to $1 \mathrm{GHz}, 1.4 \mathrm{GHz}$ to $2.7 \mathrm{GHz} 10 \mathrm{~V} / \mathrm{m}$ CLASS III Spot frequency 80, 160, 380, 450, 900, 1850, 2150 MHz Conduction interference immunity: 150 kHz to $80 \mathrm{MHz}, 10 \mathrm{~V} / \mathrm{m}$, CLASS III
		Electromagnetic emission Conduction: 150 kHz to $30 \mathrm{MHz}, 79 \mathrm{db}$ (up to 500 kHz), 73 db (from 500 kHz) peak value Radiation: 30 MHz to $2.0 \mathrm{GHz}, 40 \mu \mathrm{~V} / \mathrm{m}$ (up to 230 MHz), $47 \mu \mathrm{~V} / \mathrm{m}(230 \mathrm{MHz}$ to 1 GHz) (quasi-peak value/10 m position) $76 \mu \mathrm{~V} / \mathrm{m}$ (from 1 GHz)(peak/3 m position)
		Fast transient/burst Control power: ground collective \& I/O 2 kV , communication (clamp) 1 kV
		Commercial frequency electromagnetic field immunity Continuation $30 \mathrm{~A} / \mathrm{m}$, 1 to $3 \mathrm{~s}: 300 \mathrm{~A} / \mathrm{m}$

Item	Specifications
Lightning impulse	Between collective electric circuits and ground However, this excludes MN signal, communication wire (RS-485), transducer output wire, and kWh pulse output wire. : $5 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between mutual transformer circuits : $5 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between measurement device transformer circuit and control circuit $: 5 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between mutual control circuits $: 3 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between contact (trip output) and circuit terminal $: 3 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between control power supply circuit terminals $: 3 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative Between measurement device transformer circuit terminals Between communication wire and ground ${ }^{* 5}$: $3 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative \qquad $: 1 \mathrm{kV} 1.2 \times 50 \mu \mathrm{~s} 3$ times each positive and negative
Overload capacity	CT circuit: (continuous) (short-time) 4 times that of rated value $(20 / 4 \mathrm{~A})$ 40 times that of rated value $(200 / 40 \mathrm{~A}) 1$ second $\times 2$ times, 100 times that of rated value $(500 / 100 \mathrm{~A}) 100 \mathrm{~ms} \times 1$ time 10 .
	Io(residual/tertiary) circuit: (continuous) (short-time) 4 times that of rated value $(20 / 4 \mathrm{~A})$ 40 times that of rated value $(200 / 40 \mathrm{~A}) 1$ second $\times 2$ times, 70 times that of rated value $(350 / 70 \mathrm{~A}) 100 \mathrm{~ms} \times 1$ time
	VT circuit: 1.25 times that of rated value 10 seconds $\times 1$ time
	EVT circuit: 1.5 times that of rated value 5 seconds $\times 1$ time ${ }^{* 6}$
Ambient temperature	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (no dew condensation or frost shall be observed): working guarantee ${ }^{\star 4}$ $\left(0^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$: characteristics guarantee)
Storage temperature	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (no dew condensation or frost shall be observed)
Relative humidity	20\% to 90\% RH (no dew condensation shall be observed)
Usage atmosphere	No corrosive gas or excessive dust shall observed
Grounding	D class grounding (100 Ω or less)
Mass	1.5 kg
Permissible instantaneous power failure time	20 ms (continuous operation); however, display will disappear
Note: *1 When protection 27UV is used for other than instantaneous operation (operating time 0 s setting) in the control power AC power supply, use together with an uninterruptible power system or AC power supply unit (type: UM2P-A1, separately sold). *2 EVT and ZVT (ZPD) selection is via connection pin switching. For ZVT (ZPD) combinations, use the ZPD-2 (refer to page 34). Select a combination of EVT (110 V/190 V) and ZVT (ZPD). *3 Do not apply 2 kVAC between wires. *4 The guaranteed working temperature is the temperature at which operation is guaranteed within two times that of the guaranteed accuracy value at the JEC characteristic guaranteed temperature, and within the JIS temperature impact accuracy. *5 The loader (USB) on the front main unit panel is not considered a communication wire. *6 UM63FN-E \square AK is not compatible with ZCP combinations and EVT tertiary.	

- External I/O Specifications

| Item | Specifications |
| :--- | :--- | :--- |
| Input circuit | 100 VDC (143 VDC or less)/100 VAC (132 VAC or less) common |
| | [DC input] ON voltage: 40 VDC or more and 70 VDC or less / |
| | [AC input] ON voltage: 40 VAC or more and 70 VAC or less |

Power Monitoring Equipment Digital Multi function Protection relay and Controller F-MPC60G

- Specifications

- Measurement/Display Specifications

The measurement display value of this unit displays the current, voltage, zero-phase current and zero-phase voltage on the primary side of the transformer.

Item			Valid display range		Accuracy * ${ }^{1}$	Measurement range 0 , or 0.8% to 800% of CT primary rated current	
Current / demand current ${ }^{* 3}$ / demand current maximum value			0.8\% to 100\% of CT primary rated current (FS)		$\pm 1.5 \%$ * ${ }^{\text {a }}$		
			100\% to 800\% of CT primary rated current (FS)		$\pm 5 \%$		
Zero-phase current / zerophase current maximum value *8		ZCT * ${ }^{10}$	Rated current $1 \mathrm{~A}: 0.05$ to 1.5 A of ZCT primary current (FS)		$\pm 1.5 \%$	0 , or 0.05 to 4.00 A of ZCT primary rated current	
		Rated current $10 \mathrm{~A}: 0.5$ to 15 A of ZCT primary current (FS)	0, or 0.5 to 40.0 A of ZCT primary rated current				
		CT residual	1.5\% to 100\% of CT primary rated current (FS)		$\pm 1.5 \%$ *9	0, or 1.5% to 800% of CT primary rated current	
		100\% to 800\% of CT primary rated current (FS)	$\pm 5 \%$				
Zerophase voltage / zerophase voltage maximum value ${ }^{\star 6} \star^{7}$ *10	Average value selection		EVT	Tertiary rated voltage 110V	$\begin{aligned} & 1.5 \% \text { to } 40 \% \text { of EVT } \\ & \text { tertiary voltage (FS) } \end{aligned}$	$\pm 1.5 \%$	0, or 1.5% to 190% of EVT tertiary voltage
		$\begin{aligned} & 40 \% \text { to } 150 \% \text { of EVT } \\ & \text { tertiary voltage (FS) } \\ & \hline \end{aligned}$			$\pm 5 \%$		
		Tertiary rated voltage 190V		1.5% to 40% of EVT tertiary voltage (FS)	$\pm 1.5 \%$	0, or 1.5% to 110% of EVT tertiary voltage	
				$\begin{aligned} & 40 \% \text { to } 100 \% \text { of EVT } \\ & \text { tertiary voltage (FS) } \end{aligned}$	$\pm 5 \%$		
		ZVT (ZPD)	1.5% to 40% of zero-phase voltage at complete ground fault $6600 \mathrm{~V} / \sqrt{ } 3=3810 \mathrm{~V}$ (FS)		$\pm 1.5 \%$	0 , or 1.5% to 150% of zero-phase voltage at complete ground fault $6600 \mathrm{~V} / \sqrt{ } 3=3810 \mathrm{~V}$	
			40% to 150% of zero-phase voltage at complete ground fault $6600 \mathrm{~V} / \sqrt{ } 3=3810 \mathrm{~V}$ (FS)		$\pm 5 \%$		
	Instantaneous value selection	EVT	Tertiary voltage 110V	1.5% to 150% of EVT tertiary voltage (FS)	$\pm 5 \%$	0, or 1.5% to 190% of EVT tertiary voltage	
			Tertiary voltage 190V	1.5% to 100% of EVT tertiary voltage (FS)	$\pm 5 \%$	0, or 1.5% to 110% of EVT tertiary voltage	
		ZVT (ZPD)	1.5% to 150% of zero-phase voltage at complete ground fault $6600 \mathrm{~V} / \sqrt{3}=3810 \mathrm{~V}$ (FS)		$\pm 5 \%$	0 , or 1.5% to 150% of zero-phase voltage at complete ground fault $6600 \mathrm{~V} / \sqrt{ } 3=3810 \mathrm{~V}$	
Voltage			5 to 150 V at VT secondary voltage		$\pm 1.5 \%$	0 , or 5 to 150 V at VT secondary rated voltage	
	UM63FN-E \square AK	2VT	Line voltage: 5 V to 150 V at VT secondary voltage value(FS)		$\pm 1.0 \%$	Line voltage: 0 , or 5 to 150 V at VT secondary rated voltage	
		3VT	Phase voltage: 5 V to 150 V at VT secondary voltage value(FS) Line voltage: $8.7 \mathrm{~V} \text { to } 260 \mathrm{~V} \text { at VT secondary voltage value(FS) }$		$\pm 1.0 \%$	Phase voltage: 0 , or 5 to 150 V at VT secondary rated voltage Line voltage: \qquad	
Frequency			45 to 55 Hz when set to 50 Hz (FS)		$\pm 0.5 \%$	45 to 55 Hz when set to 50 Hz	
			55 to 65 Hz when set to 60 Hz (FS)			55 to 65 Hz when set to 60 Hz	
Power factor			Leading 0.00 to 1.00 to lagging 0.00		$\pm 5 \%$ (Conversion by 90° phase angle)	Leading 0.00 to 1.00 to lagging 0.00 Measurement range and symbols *5	
Active power Demand active power *3 Demand active power maximum value			0.004 to 1 kW at VT, CT transformer secondary (FS) Phase angle 0 to 60° (lagging) Power factor 1.00 to 0.50 (lagging)		$\pm 1.5 \%$ *9	0 , or 0.004 to 1 kW symbol at VT and CT transformer secondary *5	
Reactive power			0.004 to 0.5 kvar at VT, CT transformer secondary Phase angle 0 to 60° (lagging) Power factor 1.00 to 0.50 (lagging)		$\pm 1.0 \%$ of 1 kvar at transformer secondary (FS)	0 , or 0.004 to 1 kvar symbol at VT and CT transformer secondary *5	
Active/Reactive electric energy **			Five-digit display from 0 to 99999 The multiplying factor of the measurement display is fixed according to the CT primary rated current and VT primary rated voltage values		Equivalent to Table 4: Standard Measuring Instruments in JIS C 1216 (Measuring Instruments with Transformers)	Five-digit display from 0 to 99999	
Harmonic current		Tertiary, quinary	1.5\% to 100\% of CT primary rated current (FS)		$\pm 2.5 \%$	0, or 1.5% to 800% of CT primary rated current	
		100\% to 800% of CT primary rated current (FS)		$\pm 5 \%$			
		Septenary, overall	$\pm 5 \%$				
		100\% to 800\% of CT primary rated current (FS)	$\pm 10 \%$				
Harmonic voltage			Tertiary, quinary	5 to 150 V at VT secondary voltage value (FS)		$\pm 2.5 \%$	0 , or 5 to 150 V at VT secondary rated voltage
		Septenary, overall	5 to 150 V at VT secondary voltage value (FS)		$\pm 5 \%$		
Accident (generated phase) maximum current			10\% to 2000\% of CT primary rated current (FS)		$\pm 5 \%$	10\% to 2000\% of CT primary rated current	
Phase other than accident occurrence phase			2\% to 2000\% of CT primary rated current (FS)		$\pm 5 \%$	0, or 2\% to 2000\% of CT primary rated current	
Accident (generated phase) maximum voltage (59) Accident (generated phase) minimum voltage (27) Phase other than accident occurrence phase			5 to 150 V at VT secondary rated voltage (FS)		$\pm 5 \%$	0 , or 5 to 150 V at VT secondary rated voltage	

Item		Valid display range		Accuracy *1	Measurement range *2
ZCT * ${ }^{10}$	Accident (generated phase) maximum zero-phase current ${ }_{* 8}$	Rated current 1 A: 0.05 to 4.00 A of ZCT primary current (FS)		$\pm 5 \%$	0 , or 0.05 to 15A of ZCT primary rated current
	Phase other than accident occurrence phase	Rated current $10 \mathrm{~A}: 0.5$ to 40.0 A of ZCT primary current (FS)			O, or 0.5 to 150A of ZCT primary rated current
CT residual	Accident (generated phase) maximum zero-phase current *8	2\% to 800\% of CT primary current		$\pm 5 \%$	2\% to 800% of CT primary rated current
	Phase other than accident occurrence phase	1.5% to 800% of CT primary current			0, or 1.5% to 800% of CT primary rated current
EVT * ${ }^{10}$	Accident (generated phase) maximum zero-phase voltage *6	Tertiary rated voltage 110V	$\begin{aligned} & \text { 2.5\% to } 150 \% \text { of EVT } \\ & \text { tertiary voltage (FS) } \end{aligned}$	$\pm 5 \%$	2.5\% to 190\% of EVT tertiary voltage
	Phase other than accident occurrence phase		1.5% to 150% of EVT tertiary voltage (FS)		0, or 1.5% to 190% of EVT tertiary voltage
	Accident (generated phase) maximum zero-phase voltage	Tertiary rated voltage 190V	$\begin{aligned} & 2.5 \% \text { to } 100 \% \text { of EVT } \\ & \text { tertiary voltage (FS) } \end{aligned}$		2.5\% to 110% of EVT tertiary voltage
	Phase other than accident occurrence phase		1.5% to 100% of EVT tertiary voltage (FS)		0, or 1.5% to 110% of EVT tertiary voltage
$\underset{\star 10}{\mathrm{ZVT}}(\mathrm{ZPD})$	Accident (generated phase) maximum zero-phase voltage *6	2.5% to 150% of zero-phase voltage at complete ground fault $6600 \mathrm{~V} / \sqrt{3}=3810 \mathrm{~V}$ (FS)		$\pm 5 \%$	2.5% to 150% of zero-phase voltage at complete ground fault $6600 \mathrm{~V} / \sqrt{3}=3810 \mathrm{~V}$ (FS)
	Phase other than accident occurrence phase	1.5% to 150% of zero-phase voltage at complete ground fault $6600 \mathrm{~V} / \sqrt{3} 3=3810 \mathrm{~V}$ (FS)			0, or 1.5% to 150% of zero-phase voltage at complete ground fault $6600 \mathrm{~V} / \sqrt{ } 3=3810 \mathrm{~V}$ (FS)

Note: *1 Accuracy does not include errors from the combined transformer
*2 " 0 , a to n " means that " 0 " will be displayed from 0 to less than a .
*3 Average demand time can be selected from 0/1/5/10/15/30 minutes.
*4 There are two electric energy displays: [1] total electric energy (zero-clear not possible) and [2] periodic electric energy (zero-clear possible).
*5 We use one sign, \pm, to indicate power selling/purchasing in power measurement or LEAD/LAG in power factor measurement. (left blank in case of +) The meaning of \pm is shown below by measurement item.

$270^{\circ}(\cos \phi=0)$
[1] Active power kW

+ : Power purchasing (power
consumption)
-: Power selling (reverse flow power)
[2] Reactive power kvar
+ : lagging current by reactive power
measurement method
-: leading current by reactive power
measurement method
LEAD/LAG will be reversed according to
power selling/power purchasing.
[3] Power factor $\operatorname{COS} \varphi$
+ : Lagging power factor
- : Leading power factor
*6 The zero-phase voltage display shows the calculated value of $\square \square \square \square \mathrm{V} / \sqrt{ } 3$. Where $\square \square \square \square \mathrm{V}$ is the VT primary voltage.
Vo display example: If the VT primary voltage is 6600 V and there is a complete ground fault (100% rating $), 3810 \mathrm{~V}$ will be displayed as $6600 \mathrm{~V} / \sqrt{ } 3$.
$\mathrm{Vo} \sqrt{3}$ Display example: When the VT primary voltage is 6600 V and there is a complete ground fault (100% rating), 6600 V is displayed as $(6600 \mathrm{~V} / \sqrt{ } 3) \times \sqrt{ } 3$.
*7 Zero-phase voltage measurement (average value or instantaneous value) can be selected by settling. Average value: The average value for about 1.0 seconds is displayed as the measured value.
Instantaneous value: Displays the instantaneous value about every 0.04 seconds as a measured value.
*8 For CT method, lo and 3lo display can be selected and set.
lo display : Input current displayed as is as measurement value and accident value
3lo display : Three times the input current displayed as measurement value and accident value.
*9 Accuracy of UM63FN-E \square AK is $\pm 1.0 \%$.
*10 The UM63FN-E \square AK does not include the measurement and display functions of ZCT, EVT, and ZVT
- History data

Item	Display range	Item	Display range
50 (INST) operation count	0 to 9,999 (times)	64 (OVG) operation count *	0 to 9,999 (times)
51 (DT) operation count	0 to 9,999 (times)	Open phase operation count	0 to 9,999 (times)
51 (DT2) operation count	0 to 9,999 (times)	Reverse phase operation count	0 to 9,999 (times)
51 (OC) operation count	0 to 9,999 (times)	VR operation count *	0 to 9,999 (times)
50G operation count	0 to 9,999 (times)	OCA operation count	0 to 9,999 (times)
51G operation count	0 to 9,999 (times)	DGA/OCGA operation count *	0 to 9,999 (times)
67 (DG) operation count *	0 to 9,999 (times)	Operating time	0 to 9,999 $\times 100$ (hr)
59 (OV) operation count	0 to 9,999 (times)	Switching count	0 to 9,999 $\times 10$ (times)
27 (UV) operation count	0 to 9,999 (times)	Actual cutoff count	0 to 9,999 (times)
27-2 (UV2) operation count	0 to 9,999 (times)		

(Other history display) Fault value display: Fault value display on occurrence of a fault, history maximum values of zero-phase voltage/current, maximum demand value (A, W), and minimum instantaneous voltage (Note) 1. Count initial value settings can be changed for the count history data.
2. "Operating time" refers to the integrated value of time when the control power of the F-MPC60G Series is normal and input 52a (circuit breaker answer-back signal) of terminal block B-13 is on.
3. The operation count for multi-element protection (such as 50 operating at $\mathrm{R} / \mathrm{S} / \mathrm{T}$) is only counted as 1 even during multi-operation when there is concurrent occurrence (including delays in output continuity).
4. The actual cutoff count is the number of times the trip relay was turned on by the protective relay (including external trip) during circuit breaker inrush (52 a in on-state).

* Historical data such as "67(DG) operation count", "64 (OVG) operation count", "VR operation count", and "DGA operation count" are not included in E \square AK.

■ Specifications

- Specifications of protective relays

Item		Current/voltage operate value characteristic adjustment range	Operating time (timer) characteristic adjustment range	Characteristics			
		Operate value		Operating time			
50 (instantaneous)			1.0 to 16.0 times the CT rated current (in steps of 0.1 times), Lock *8	(Fixed)	$\pm 5 \%$	40 ms or less	
51DT (fixed time limit)		0.2 to 16.0 times the CT secondary rated current (in steps of 0.1 times), Lock *9	0.00, 0.05 to 5.00 s ($0.01 \mathrm{~s} \mathrm{steps)}$	$\pm 5 \%$	Less than 1 s 1 s or more \pm	$\begin{aligned} & 50 \mathrm{~ms} \\ & 5 \% \end{aligned}$	
51DT2 (fixed time limit)		20 to 1000\% of CT rated current (in steps of 1\%), Lock	0.00, 0.05 to 10.00 s (0.01 s steps)	$\pm 5 \%$	Less than 1 s 1 s or more \pm	$\begin{aligned} & 50 \mathrm{~ms} \\ & 5 \% \end{aligned}$	
510 C (inverse time limit) IEC: SI, EI, VI, LT, I't IEEE: MI, EI, VI		20 to 240% of CT rated current (in steps of 1\%), Lock *OC/OL selection ${ }^{* 7 * 10}$	Time scale factor: 0.2 to 20.0 times (0.1 steps) (Operating time: $\min 150 \mathrm{~ms}$)	$\pm 5 \%$	setting value $500: \pm 7 \%, 10$ (Lower limit \pm	$\begin{aligned} & \text { f 300\%: } \pm 12 \% \\ & 0 \%: \pm 5 \% \\ & 100 \mathrm{~ms} \text {) } \end{aligned}$	
OCA (Overcurrent pre-alarm)		10 to 100% of CT rated current (in steps of 1\%), Lock	10 to 200 s (10 s steps)	$\pm 10 \%$	$\pm 5 \%$		
50 G (instantaneous, short time limit)		0.1 to 8.0 times the CT rated current (in steps of 0.1 times), Lock	0.0 to 180.0 (0.1 s steps) *2	$\pm 5 \%$	$\pm 5 \%$ (Lower limit	$50 \mathrm{~ms})$	
51 G 3CT residual method or CT tertiary IEC: SI, EI, VI, LT IEEE: MI, EI, VI (inverse time limit selected)		0.02 to 1.00 times the CT rating (in steps of 0.01 times), Lock	0.5 to 50.0 times (0.1 steps) (Operating time of $\min 150 \mathrm{~ms}$) *2	$\begin{aligned} & \pm 5 \% \\ & (\text { Lower limit } \pm 100 \mathrm{~mA}) \end{aligned}$	setting value of $500: \pm 7 \%, 10$ (Lower limit \pm	$\begin{aligned} & \text { f 300\%: } \pm 12 \% \\ & 00 \%: \pm 5 \% \\ & 100 \mathrm{~ms}) \end{aligned}$	
(fixed time limit selected)		0.02 to 1.00 times rating (in steps of 0.01 times), Lock	0.10 to 600.00 s (0.05 s steps)	$\begin{aligned} & \pm 5 \% \\ & \text { (Lower limit } \pm 100 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \text { (Lower limit } \pm \end{aligned}$	$50 \mathrm{~ms})$	
OCGA (zero-phase current prealarm)		50 to 100% of 51 G pick-up current setting value (in steps of 1%, Lock	0.10 to 600.00 s (0.05 s steps)	$\begin{aligned} & \pm 10 \% \\ & (\text { Lower limit } \pm 100 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \text { (Lower limit } \pm \end{aligned}$	50 ms)	
59 (OV) *11		VT secondary: 110 to 150 V (in steps of 1V), Lock	0.0 to 60.0 s (0.1 s steps)	$\pm 5 \%$	$\begin{aligned} & \pm 5 \% \\ & \text { (Lower limit } \pm 5 \end{aligned}$	ms)	
27 (UV)**		VT secondary: 20 to 100 V (in steps of 1 V), 52 a link on 20 to on 100 V (in steps of 1 V), Lock	0.0 to 60.0 s (0.1 s steps)	$\pm 5 \%$	$\pm 5 \%$ (Lower li When 0 s is s	it $\pm 50 \mathrm{~ms}$) t: 35 ms or less	
27 (UV 2) *13		VT secondary: 20 to 100 V (in steps of 1 V), Lock	0.0 to 60.0 s (in steps of 0.1 s)	$\pm 5 \%$	$\pm 5 \%$ (Lower l When 0 s is s	$\begin{aligned} & \text { nit } \pm 50 \mathrm{~ms} \text {) } \\ & \mathrm{t}: 35 \mathrm{~ms} \text { or less } \end{aligned}$	
64 (OVG) ${ }^{14}$		2.5 to 40.0\% of the rating (in steps of 0.5\%), Lock	0.0 to 120.0 s (in steps of 0.1 s)	* 4	$\pm 5 \%$ (Lower lim	it $\pm 50 \mathrm{~ms}$)	
67DG**	3CT residual or CT tertiary	Zero-phase voltage: 2.5 to 40.0% of the rating (in steps of 0.5%)	0.10 to 600.00 s (in steps of 0.05 s)	* 4	$\begin{aligned} & \pm 5 \% \text { (Lower } \\ & \text { limit } \pm 50 \mathrm{~ms} \text {) } \end{aligned}$	[3CT residual] or [CT tertiary] Type: UM63FN	
		Zero-phase current: 0.02 to 1.00 times of the rating (in steps of 0.01 times)		$\begin{aligned} & \pm 5 \% \text { (Lower limit } \pm 100 \\ & \mathrm{~mA}) \end{aligned}$			
		Maximum sensitivity phase angle: 0° (fixed) Operation phase angle range: $\pm 80^{\circ}$		$\pm 12.5{ }^{\circ}$			
$\underset{* 6 * 14}{67 \mathrm{DG} / 51 \mathrm{G}}(\mathrm{OCG})$	ZCT system *1	Zero-phase voltage: 2.5 to 40.0% of the rating (in steps of 0.5%)	0.10 to 600.00 s (in steps of 0.05 s)	* 4		[ZCT] Type: UM62F, UM62C	
		Zero-phase current (Rating 1 A): 0.10 to 1.00 A of the rating (in steps of 0.05 A), Lock *5		$\pm 10 \%$ of setting value			
		Zero-phase current (Rating 10 A): 0.1 to 10.0 A of the rating (in steps of 0.05 A), Lock *5					
		Maximum sensitivity phase angle: $20,30,45,60^{\circ}$ Operation phase angle range: $\pm 80^{\circ}$		$\pm 12.5^{\circ}$			
DGA * ${ }^{14}$	3CT residual or CT tertiary	Zero-phase voltage: 2.5 to 40.0% of the rating (in steps of 0.5%)	0.10 to 600.00 s (in steps of 0.05 s)	* 4	$\begin{aligned} & \pm 5 \% \text { (Lower } \\ & \text { limit } \pm 50 \mathrm{~ms}) \end{aligned}$	[3CT residual] or [CT tertiary] Type: UM63FN	
		Zero-phase current: 50 to 100% of the DG operating current setting value (in steps of 1%), Lock		$\begin{aligned} & \pm 10 \% \text { (Lower limit } \pm 100 \\ & \mathrm{~mA}) \end{aligned}$			
		Maximum sensitivity phase angle: 0° (fixed) Operation phase angle range: $\pm 80^{\circ}$		$\pm 12.5{ }^{\circ}$			
$\overline{\text { DGA/OCGA *6*14 }}$	ZCT system *1	Zero-phase voltage: 2.5 to 40.0% of the rating (in steps of 0.5\%)	0.10 to 600.00 s (in steps of 0.05 s)	* 4		[ZCT] Type: UM62F, UM62C	
		Zero-phase current: 50 to 100% of the DG operating current setting value (in steps of 1%), Lock		$\pm 10 \%$ of setting value (Lower limit $\pm 10 \mathrm{~mA}$)			
		Maximum sensitivity phase angle: $20,30,45,60^{\circ}$ Operation phase angle range: $\pm 80^{\circ}$		$\pm 12.5^{\circ}$			
Open phase		-	-	Imbalance ratio 50 to 80% or more	$2 \mathrm{~s}($ fixed) ± 1		
Reverse phase		-	-	-	0.5 s or less		
Voltage establishment (VR) ${ }^{* 14}$		VT secondary: 10 to 110 V (in steps of 1 V), Lock	0.00, 0.10 to 60.00 s (0.05 s steps)	$\pm 5 \%$ (Lower limit $\pm 2 \mathrm{~V}$)	$\pm 5 \%$ (Lower limit $\pm 100 \mathrm{~ms}$)		

*1 Use $200 \mathrm{~mA} / 1.5 \mathrm{~mA}$ for zero-phase current transformer.
*2 With a function to prevent malfunctions due to exciting current
[1] If the fundamental wave current of zero-phase current is 15% or more of the rated current and the secondary harmonic content ratio is about 15% or more, the device will perform the function to prevent malfunction under inrush exciting current to lock the protection 50G and 51G operation. In the case of 50G with the operating time being 0 s , however, this function will not work.
[2] If the fundamental wave current of load current (CT secondary) is higher than the rated current and the secondary harmonic content ratio is about 15% or more, the device will perform the function to prevent malfunction under inrush exciting current to lock the protection 50 G and 51 G operation. In the case of protection 50G with the operating time being 0 s , however, this function will not work. The secondary harmonics suppression will be locked when the zero-phase current or one of load currents $(A / B / C)$ reaches the predetermined value.
[3] DG, DGA, OCG, and OCGA do not have this function (the second harmonic content rate is not judged).
[4] The second harmonic suppression function in [1] and [2] above can be set as enabled/disabled (Loc).

* 3 Voltage determination is selectable from AND, three-phase OR, and 2 OUT OF 3 ($2 / 3$ determination).
*4 At EVT combination (excluding EVT tolerance): JEC-25115 V class equivalent Type: [2.3\% + \{(Rating value)/(voltage setting value) $\} \times 0.16] \times 2$ At ZVT combination: $\pm 25 \%$
*5 This product is for ungrounded systems. As a general rule, use a grounding system of 10 A or less for GTR grounding systems. For a grounding system for higher currents, select a type with a zero-phase operating current specification of 1.0 to 10 A .
${ }^{*} 6$ The 67DG detection in the feeder unit is performed by the zero-phase voltage signal (MN signal wire) from the power-receiving unit (UM6 \square) or bus unit (UM62B) and the zero-phase current input to the unit.
*7 When OL is selected, 51OC performs an AND operation with 51DT. (Even if 51DT satisfies trip conditions, 51DT will not operate until 510 C operates.) For details, refer to Appended Figure 5.
*8 The current operating ampere setting range at UM63FN-E \square AK 50INST (instantaneous) is CT secondary rated current of 1.0 to 20.0 times.
${ }^{*} 9$ The current operating ampere setting range at UM63FN-E \square AK 51DT (fixed time delay) is CT secondary rated current of 0.2 to 20.0 times.
*10 The current operating ampere setting range at UM63FN-E \square AK 51OC (inverse time delay) is CT rated current of 10 to 240%.
*11 UM63FN-E \square AK: 60 to 150 V
*12 UM63FN-E \square AK: 10 to 110 V , on 10 to 110 V
*13 UM63FN-E \square AK: 10 to 110 V
*14 UM63FN-E \square AK: Not applicable

- Specifications of transducer outputs

Item			Specifications	Acceptable error	Power receiving	Feeder	Bus	
Transducer output signal *1			4 to 20 mA (acceptable load 270Ω or less)	-	-	-	-	
Signal type	Current (Ir, Is, It)		4 to 20 mA versus 0 to CT rating	$\pm 1.5 \%$	O	\bigcirc		
	Voltage (Vuv, Vvw, VWu)		4 to 20 mA versus VT secondary 0 to 150 V		O	O	O	
	UM63FN-E \square AK	Line voltage	(Vab, Vbc, Vca): 4 to 20 mA versus VT secondary 0 to 150 V 4 to 20 mA versus VT secondary 0 to $150 \times \sqrt{ } 3 \mathrm{~V}$					
		Phase voltage	(Van, Vbn, Vcn): 4 to 20 mA versus VT secondary 0 to $150 \times \sqrt{ } 3 \mathrm{~V}$ 4 to 20 mA versus VT secondary 0 to 150 V					
	Active power (W)		4 to 20 mA versus 0 to 1 kW (CT5A conversion)		O	O	-	
	Reactive power (var)		4 to 12 to 20 mA versus -1 kvar to 0 to 1 kvar (CT5A conversion)		O	\bigcirc	-	
	Frequency (Hz)		4 to 20 mA versus 45 to 55 Hz or 55 to 65 Hz		\bigcirc	\bigcirc	O	
	Power factor (PF)		4 to 12 to 20 mA versus LEAD 0.5 to 1 to LAG 0.5	$\pm 5 \%$	\bigcirc	\bigcirc	-	
	Current expansion (Ir, Is, It)		4 to 16 mA versus 0 to CT rating 16 to 20 mA versus CT rating to CT rating $\times 5$ times	$\pm 1.5 \%$	O	O	-	
			$\pm 5 \%$					
	Single-phase active power			4 to 20 mA versus 0 to 0.5 kW (CT5A conversion)	$\pm 1.5 \%$	O	O	-
	Single-phase reactive power		4 to 12 to 20 mA versus -0.5 kvar to 0 to 0.5 kvar (CT5A conversion)		\bigcirc	\bigcirc	-	
	Zero-phase voltage (Vo) *2		```4 to }20\textrm{mA}\mathrm{ versus 0% to 136% 100% : EVT is rated /\sqrt{}{3},\mathrm{ ZVT is 3810V} EVT 110V : 0 to 150 V (4 to 20 mA) EVT 190V : 0 to 260 V(4 to 20 mA) ZVT: 0 to 5195 V (4 to 20 mA)```	$\pm 1.5 \%$	\bigcirc	-	0	
	Zero-phase current (1o)		3CT residual: 4 to 20 mA versus 0 to CT rating ZCT [rated 1 A] : 4 to 20 mA versus 0 to 1 A ZCT [rated 10 A]: 4 to 20 mA versus 0 to 10 A	$\pm 1.5 \%$	O	O	-	
Output response time			2 sec. or less (when rated input is applied, the time will be within $90 \% \pm 1 \%$ of the final steady value)					

Note *1 The tolerance is the error with respect to FS. Select 6 amounts in the transducer output signal by settling. *2 UM63FN-E \square AK: Not applicable.

- Specifications of kWh pulse output

Item	Specifications
Output	Open collector output
Output capacity	Maximum $150 \mathrm{VDC}, 100 \mathrm{~mA}$
Pulse width	$200 \pm 20 \mathrm{~ms}$
Output pulse unit	$10^{n} \mathrm{kWh} / \mathrm{pulse}(\mathrm{n}=-2$ to 4 in setting $)$
	$2,000 \mathrm{pulse} / \mathrm{kWh}(\mathrm{n}=\mathrm{F}$ in setting $)$

- Communications specifications

item		T-Link *	Specifications		
		F-MPC-Net protocol	Modbus RTU protocol		
Standard			-	EIA RS-485	
Data exchange		1:N (this device) polling/selecting			
Maximum transmission distance		700 m	1,000 m		
Number of connection stations		Up to 32 slave stations	Maximum 64 units/one system (however, the master device is included in the 64 units)		
Address setting		01 to 99/Lock (Factory setting: Lock)	01 to 99/Lock (Factory setting: Lock)		
Transmission speed		500kbps	4800/9600/19200/38400 bps (Factory setting: 19200bps)		
Data format	Start bit	designated	1 bit (fixed)	1 bit (fixed)	
	Data length		7/8 bits (select) (Factory setting: 7bits)	8 bit (fixed)	
	Parity bit		None/Even number/Odd number (select) (Factory setting: Odd number)	None/Even number/Odd number (select)	
	Stop bit		1 bit (fixed)	1/2 bit (auto) ${ }^{\text {Note6 }}$	

Note 1: Use KPEV-SB (0.5 mm 2), CPEV-SB $(\phi 0.9 \mathrm{~mm})$ or equivalent for the communication cable, and connect the shield wire to the SG terminal (Terminal block A No.2).
Note 2: Do not branch the communication cable, connect terminating resistors to both ends of the communication cable. If this unit is the end of communication, short-circuit No. 3 and No. 5 of terminal block A. Built-in terminating resistor 120Ω.
Note 3: Use a communication cable with a transmission distance of 700 m or less for T-link and 1,000 m or less for RS-485.
Note 4: Keep the wiring route away from high-voltage equipment and power lines (cables) as much as possible.
Note 5: For details on the communication procedure, refer to "Communication application manual
(T-link: 62F7-E-0216 F-MPC-Net: 62F7-E-0217, 62F7-E-0254 Modbus RTU: 62F7-E-0218, 62F7-E-0255)".
Note 6: When the Modbus RTU protocol is selected, the character configuration is fixed at 11 bits. The stop bit length is automatically recognized based on whether or not parity is selected. *UM63FN-E \square AK : T-link communication function is not supported.

(Semi-standard)

JEC-2500 (Protective relay for electric power), JEC-2501 (Electromagnetic compatibility test of protective relay), JEC-2512 (Ground fault relay), JEC-2511 (Voltage relay), JIS C4602 (Overcurrent relay for high voltage power reception)), JIS C4609 (High voltage power receiving ground fault direction relay), JIS C1102-1,2,3,4,5,7 (Indicating electricity meter), JEC-2518 (Digital overcurrent relay), JIS C1111 (AC-DC) Transducer), JIC C1216 (electric meter [model with transformer]), IEC60255-1 (common) IEC60255-21 (vibration, shock, seismic resistance), IEC60255-26 (electromagnetic compatibility requirement) IEC60255-27 (safety requirement)), IEC60255-127 (OV/UV) IEC60255-151 (OC)

Power Monitoring Equipment

 Digital Multi function Protection relay and Controller F-MPC60G
■ Specifications

- Clock specifications

Item	Specifications	Remarks
Clock accuracy	Within ± 20 minutes/year	Average ambient temperature: $\mathrm{At} \pm 25^{\circ} \mathrm{C}$
Power outage guarantee	7 days If a power outage exceeds the backup period, it will start up again at 2000-01-01 0:00.	Average ambient temperature: $\mathrm{At} \pm 25^{\circ} \mathrm{C}$ Control power must flow for at least 10 minutes to charge the backup electrical double-layer capacitor.

■ 51(OC), 51G(OCG) relay characteristics

Standard Inverse Time (SI) IEC characteristic

Note: The time setting (lever) is in steps of 0.1 times. (Lower limit: 51 is $0.2,51 \mathrm{G}$ is 0.5 ; Upper limit: 51 is $20.0,51 \mathrm{G}$ is 50.0) Part of the lever is omitted in the above characteristic diagram.

$$
t=\frac{0.14}{1^{0.02}-1} \times \frac{L}{10}(L: \text { Time factor })
$$

Extremely Inverse Time (EI) IEC characteristic

Note: The time setting (lever) is in steps of 0.1 times.
(Lower limit: 51 is $0.2,51 \mathrm{G}$ is 0.5 ; Upper limit: 51 is $20.0,51 \mathrm{G}$ is 50.0) Part of the lever is omitted in the above characteristic diagram.
$\mathrm{t}=\frac{80}{\mathrm{I}^{2}-1} \times \frac{\mathrm{L}}{10}(\mathrm{~L}:$ Time factor $)$

Very Inverse Time (VI) IEC characteristic

Note: The time setting (lever) is in steps of 0.1 times. (Lower limit: 51 is $0.2,51 \mathrm{G}$ is 0.5 ; Upper limit: 51 is $20.0,51 \mathrm{G}$ is 50.0) Part of the lever is omitted in the above characteristic diagram.

$$
\mathrm{t}=\frac{13.5}{\mathrm{I}-1} \times \frac{\mathrm{L}}{10}(\mathrm{~L}: \text { Time factor })
$$

$1^{2 t} t$ characteristic

Note: The time setting (lever) is in steps of 0.1 times. (Lower limit: 0.2; Upper limit: 20.0) Part of the lever is omitted in the above characteristic diagram. $\mathrm{t}=\frac{720}{\mathrm{I}^{2}} \times \frac{\mathrm{L}}{10}$ (L: Time factor)

Long Inverse Time (LT) IEC characteristic

Note: The time setting (lever) is in steps of 0.1 times.
(Lower limit: 51 is $0.2,51 \mathrm{G}$ is 0.5 ; Upper limit: 51 is $20.0,51 \mathrm{G}$ is 50.0) Part of the lever is omitted in the above characteristic diagram.

$$
\mathrm{t}=\frac{120}{\mathrm{I}-1} \times \frac{\mathrm{L}}{10}(\mathrm{~L}: \text { Time factor })
$$

■51(OC), 51G(OCG) relay characteristics (Cont.)

Moderate recoil time (MI) IEEE characteristic

Note: The time setting (lever) is in steps of 0.1 times (Lower limit: 0.2; Upper limit: 20.0)
Part of the lever is omitted in the above characteristic diagram.
$\mathrm{t}=\left\{\frac{0.0515}{\mathrm{I}^{0.02}-1}+0.1140\right\} \times \frac{\mathrm{L}}{10}$ (L: Time factor)

Very Inverse Time (VI) IEEE characteristic

Note: The time setting (lever) is in steps of 0.1 times (Lower limit: 0.2; Upper limit: 20.0) Part of the lever is omitted in the above characteristic diagram.
$t=\left\{\frac{19.61}{L^{2}-1}+0.491\right\} \times \frac{L}{10}$ (L: Time factor)

Extremely Inverse Time (EI) IEEE characteristic

Note: The time setting (lever) is in steps of 0.1 times. (Lower limit: 0.2; Upper limit: 20.0)
Part of the lever is omitted in the above characteristic diagram.
$\mathrm{t}=\left\{\frac{28.2}{\mathrm{I}^{2}-1}+0.1217\right\} \times \frac{\mathrm{L}}{10}($ L: Time factor $)$

■ External dimensions [unit: mm]

■ Indications \& Settings

Power Monitoring Equipment
 Digital Multi function Protection relay and Controller F-MPC60G

- Wiring diagram example

- Power receiving unit UM63F (3CT type) [Ground fault current: residual circuit method]

Note (1) Inputs 1 to 8 and outputs 1 to 8 can be used by selecting (assigning) functions via the settings.
(2) The "ON, OFF, trip, device failure" output and "52a (CB ON answerback) and trip coil TC disconnection monitor" input are dedicated.
(3) The device failure output is the b contact output (normally it is excited, and in the event of an error, it will enter a non-excited state and the contact will be closed). For this reason, there will be about 4 s of delay before the contact is opened after power is supplied. Therefore, when creating an external sequence (in the case that externally-connected devices are held by one-shot signals), please consider using a timer as necessary.
(4) When driving a load of more than the output contact capacity, be sure to use it in combination with a power relay. (Refer to page 17 for the external I/O specifications).
(5) When using the communication function (RS-485, T-LINK) and the main unit is at the end of the communication line (termination), short-circuit pins No. 3 and No. 5 of terminal block A. (It has a built-in terminating resistor of 120Ω). For non-terminated units, use it with no connection between Nos. 3 and 5 .
(6) Specify transmission (RS-485 or T-LINK) and transducer output using the types shown on page 15.
(7) "Trip coil TC disconnection monitor" input pins B-Nos. 14 and 15 have polarity. Connect No. 14 to the P side of the control power supply.

Note (1) Inputs 1 to 8 and outputs 1 to 8 can be used by selecting (assigning) functions via the settings.
(2) The "ON, OFF, trip, device failure" output and "52a (CB ON answerback) and trip coil TC disconnection monitor" input are dedicated.
(3) The device failure output is the b contact output (normally it is excited, and in the event of an error, it will enter a non-excited state and the contact will be closed). For this reason, there will be about 4 s of delay before the contact is opened after power is supplied. Therefore, when creating an external sequence (in the case that externally-connected devices are held by one-shot signals), please consider using a timer as necessary.
(4) When driving a load of more than the output contact capacity, be sure to use it in combination with a power relay. (Refer to page 17 for the external I/O specifications).
(5) When using the communication function (RS-485, T-LINK) and the main unit is at the end of the communication line (termination), short-circuit pins No. 3 and No. 5 of terminal block A. (It has a built-in terminating resistor of 120Ω). For non-terminated units, use it with no connection between Nos. 3 and 5 .
(6) Specify transmission (RS-485 or T-LINK) and transducer output using the types shown on page 15.
(7) "Trip coil TC disconnection monitor" input pins B-Nos. 14 and 15 have polarity. Connect No. 14 to the P side of the control power supply.

Power Monitoring Equipment
 Digital Multi function Protection relay and Controller F-MPC60G

- Wiring diagram example

- Power receiving unit UM63F (3CT type) [Ground-fault voltage: EVT or ZVT method]

Note (1) Inputs 1 to 8 and outputs 1 to 8 can be used by selecting (assigning) functions via the settings.
(2) The "ON, OFF, trip, device failure" output and "52a (CB ON answerback) and trip coil TC disconnection monitor" input are dedicated.
(3) The device failure output is the b contact output (normally it is excited, and in the event of an error, it will enter a non-excited state and the contact will be closed). For this reason, there will be about 4 s of delay before the contact is opened after power is supplied. Therefore, when creating an external sequence (in the case that externally-connected devices are held by one-shot signals), please consider using a timer as necessary.
(4) When driving a load of more than the output contact capacity, be sure to use it in combination with a power relay. (Refer to page 17 for the external I/O specifications).
(5) When using the communication function (RS-485, T-LINK) and the main unit is at the end of the communication line (termination), short-circuit pins No. 3 and No. 5 of terminal block A (It has a built-in terminating resistor of 120Ω). For non-terminated units, use it with no connection between Nos. 3 and 5 .
(6) When using the EVT method, connect the EVT signal to No. 27 (f) and No. 29 (a) of terminal block A, and then short-circuit pin Nos. 28 and 30
(7) When using the ZVT method, connect the ZVT signal to No. 28 (Y1) and No. 29 (Y2) of terminal block A.
(8) Use twisted wires (or twisted strands) for the MN signal wire and Vo.
(9) Specify transmission (RS-485 or T-LINK) and transducer output using the types shown on page 15.
(10) "Trip coil TC disconnection monitor" input pins B-Nos. 14 and 15 have polarity. Connect No. 14 to the P side of the control power supply.

Note (1) Inputs 1 to 8 and outputs 1 to 8 can be used by selecting (assigning) functions via the settings.
(2) The "ON, OFF, trip, device failure" output and "52a (CB ON answerback) and trip coil TC disconnection monitor" input are dedicated.
(3) The device failure output is the b contact output (normally it is excited, and in the event of an error, it will enter a non-excited state and the contact will be closed). For this reason, there will be about 4 s of delay before the contact is opened after power is supplied. Therefore, when creating an external sequence (in the case that externally-connected devices are held by one-shot signals), please consider using a timer as necessary.
(4) When driving a load of more than the output contact capacity, be sure to use it in combination with a power relay. (Refer to page 17 for the external I/O specifications).
(5) When using the communication function (RS-485, T-LINK) and the main unit is at the end of the communication line (termination), short-circuit pins No. 3 and No. 5 of terminal block A. (It has a built-in terminating resistor of 120Ω). For non-terminated units, use it with no connection between Nos. 3 and 5 .
(6) Specify transmission (RS-485 or T-LINK) and transducer output using the types shown on page 15.
(7) "Trip coil TC disconnection monitor" input pins B-Nos. 14 and 15 have polarity. Connect No. 14 to the P side of the control power supply.

\square Wiring diagram example

- Power receiving unit external wiring diagram example (UM62F)

■ Features

This device is an AC/DC power supply unit that is to be used with an AC control power supply when operating a multifunctional digital relay.

- The protection 27 (UV) function and the use of this instrument are shown below.

Protection 27 (UV) function	This device (UM2P-A1)	Remarks
27 operating time 0s or 27 not used	Not required.	Protection 50 (INST) Protection 27 activates.
27 operating time 1.0s or less	Required.	Protection 27 activates.
27 operating time exceeds 1.0s	Required. Also requires external capacitors, etc.	Refer to Note 2 in the table below.

- In addition to the F-MPC control power supply, the output power supply comes with a built-in circuit breaker capacitor trip power supply (capacitor capacity of $1500 \mu \mathrm{~F}$).
- Only one multifunctional digital relay can be connected to the unit.

■ Model, type, and specification

(Note 1) When a power failure occurs after charging at 60 VAC , the residual voltage of the trip capacitor charge after 30 seconds of power failure will be 75 V DC or more
(Note 2) Since the guaranteed power failure time is 1 second, if the bus and power-receiving unit UV (undervoltage) relay function is used and the operation time is set for more than 1 second, the UV relay cannot be operated by this power supply unit alone during a power failure.
When used with a UV operating time in excess of 1 s , use it in conjunction with an external capacitor (not provided; requires a withstand voltage of 200 V DC or more) for the "multifunctional digital relay control output" component of this power supply unit by referencing the below table.
Capacitor example: Nichicon's LNT2D153MSE, etc.

Protection 27 (UV) operating time	External capacitor capacity	Capacitor example
1.2 s to 2.0 s	$1,500 \mu \mathrm{~F}$	Nichicon's LNT2D152MSE
2.2 s to 5.0 s	$6,800 \mu \mathrm{~F}$	Nichicon's LNT2D682MSE
6.0 s or more	$1,600 \times \mathrm{t}(\mu \mathrm{F})$	t: Protection 27 operating time (setting value)

■ External dimensions [unit: mm]

Power Monitoring Equipment
 Zero-Phase Reference Input Device (ZVT) (For F-MPC60G/60B/50 Series)

■ Application

These units are used in combination with F-MPC60G/60B/50 Series multifunctional digital relay (multifunctional digital relays cannot be used with other ZVTs).
The power receiving unit or bus unit receives a zero-phase voltage signal from type ZPD-2 and outputs it as a phase-pulse signal if it is at or above the specified (set value) level. The feeder unit operates as a ground directional relay (67DG) by discriminating the phase if the pulse-phase signal and the unit's zero-phase current signal are at or above the specified (set value) level.
(Note) Make the total length of the MN signal wire 100 m or less, and make the number of connected feeder units 50 or less. Use twisted strand (or twisted wire) for the MN signal wire. The ZPD-2 is connected to the power-receiving unit or bus unit in a one-to-one connection.

Model, type, product code, and specifications

Item	Specification
Structure	Indoor-use epoxy resin post-insulator type (voltage converter separate mounting type)
Type	ZPD-2
Product code	HZ1JE
Rated voltage	6.6 kV
Capacitance	$250 \mathrm{pF} \times 3$ phases
Dielectric strength	$22 \mathrm{kV} \mathrm{AC} \mathrm{/} \mathrm{1} \mathrm{minute} lightning impulse 60 kV$,
Connection cable length	1 m (Note 2)
Compatible models	QHA-DG3, QHA-DG5, QHA-VG1, QHA-VR1, New-AUTO.V, F-MPC50, F-MPC60G, F-MPC60B (Note 1, Note 2)

(Note 1) When applying ZPD-2 to QHA and New-AUTO.V, refer to the notes on page 21 of the Protective Relay for High-Voltage Power Receiving and Distribution (62G1-J-0068b) catalog.
(Note 2) For a cable length of 3 m , specify the ZPD-2M3 type.

Example of wiring diagram

- External dimensions [unit: mm]

ZPD-2 zero-phase voltage detection insulator (3 per set)

View from direction A

Terminal block specification Rating: $600 \mathrm{~V}, 30 \mathrm{~A}$ Material: PBT (94V-0) black Wiring screws: $\mathrm{M} 4 \times 8 \mathrm{~L}$ brass

Catalog Disclaimer

The information contained in this catalog does not constitute an express or implied warranty of quality, any warranty of merchantability of fitness for a particular purpose is hereby disclaimed.

Since the user's product information, specific use application, and conditions of use are all outside of Fuji Electric FA Components \& Systems'control, it shall be the responsibility of the user to determine the suitability of any of the products mentioned for the user's application.

One Year Limited Warranty

The products identified in this catalog shall be sold pursuant to the terms and conditions identified in the "Conditions of Sale" issued by Fuji Electric FA with each order confirmation.

Except to the extent otherwise provided for in the Conditions of Sale issued by Fuji Electric FA, Fuji Electric FA warrants that the Fuji Electric FA products identified in this catalog shall be free from significant defects in materials and workmanship provided the product has not been: 1) repaired or altered by others than Fuji Electric FA; 2) subjected to negligence, accident, misuse, or damage by circumstances beyond Fuji Electric FA's control; 3) improperly operated, maintained or stored; or 4) used in other than normal use or service. This warranty shall apply only to defects appearing within one (1) year from the date of shipment by Fuji Electric FA, and in such case, only if such defects are reported to Fuji Electric FA within thirty (30) days of discovery by purchaser. Such notice should be submitted in writing to Fuji Electric FA at 5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, Japan. The sole and exclusive remedy with respected to the above warranty whether such claim is based on warranty, contract, negligence, strict liability or any other theory, is limited to the repair or replacement of such product or, at Fuji Electric FA's option reimbursement by Fuji Electric FA of the purchase price paid to Fuji Electric FA for the particular product. Fuji Electric FA does not make any other representations or warranties, whether oral or in writing, expressed or implied, including but not limited to any warranty regarding merchantability or fitness for a particular purpose. Except as provided in the Conditions of Sale, no agent or representative of Fuji Electric FA is authorized to modify the terms of this warranty in writing or orally.

In no event shall Fuji Electric FA be liable for special, indirect or consequential damages, including but not limited to, loss of use of the product, other equipment, plant and power system which is installed with the product, loss of profits or revenues, cost of capital, or claims against the purchaser or user of the product by its customers resulting from the use of information, recommendations and descriptions contained herein. The purchaser agrees to pass on to its customers and users, in writing at the time inquiries and orders are received by buyer, Fuji Electric FA's warranty as set forth above.

\. Safety Considerations

- Operate (keep) in the environment specified in the operating instructions and manual. High temperature, high humidity, condensation, dust corrosive gases, oil, organic solvents, excessive vibration or shock might cause electric shock, fire, erratic operation or failure.
- For safe operation, before using the product read the instruction manual or user manual that comes with the product carefully or consult the Fuji sales representative from which you purchased the product.
- Products introduced in this catalog have not been designed or manufactured for such applications in a system or equipment that will affect human bodies or lives.
- Customers, who want to use the products introduced in this catalog for special systems or devices such as for atomic-energy control, aerospace use, medical use, passenger vehicle, and traffic control, are requested to consult with Fuji Electric FA.
- Customers are requested to prepare safety measures when they apply the products introduced in this catalog to such systems or facilities that will affect human lives or cause severe damage to property if the products become faulty.
- For safe operation, wiring should be conducted only by qualified engineers who have sufficient technical knowledge about electrical work or wiring.
- Follow the regulations of industrial wastes when the product is to be discarded.
- For further questions, please contact your Fuji sales representative or Fuji Electric FA.

Fuji Electric FA Components \& Systems Co.,Ltd.

5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, 103-0011, Japan

URL www.fujielectric.com/fcs/

